【加密】JM084 – 2021Pytorch深度学习实战 [248.2G]
┣━━00.资料 [181.1G]
┃ ┣━━WEEK 1 [26.4M]
┃ ┃ ┣━━启发 [14.3M]
┃ ┃ ┃ ┣━━启发(win电脑适用).exe [14.3M]
┃ ┃ ┃ ┗━━MAC及其他操作系统走这里.txt [80B]
┃ ┃ ┣━━GPU购买指南 + PyTorch安装及环境搭建 V4.pdf [4.8M]
┃ ┃ ┣━━Lesson 1.张量(Tensor)的创建和索引.ipynb [55.7K]
┃ ┃ ┣━━Lesson 2.张量的索引、分片、合并以及维度调整.ipynb [46.6K]
┃ ┃ ┣━━Lesson 3.张量的广播和科学运算.ipynb [65.7K]
┃ ┃ ┣━━Lesson 4.张量的线性代数运算.ipynb [67.1K]
┃ ┃ ┗━━Python的安装与环境配置.pdf [7.1M]
┃ ┣━━WEEK 10-WEEK 14 CV数据包 [180.7G]
┃ ┃ ┣━━datasets [345.1M]
┃ ┃ ┃ ┣━━FashionMNIST.zip [88.4M]
┃ ┃ ┃ ┣━━omniglot-py.zip [21.8M]
┃ ┃ ┃ ┗━━SVHN.zip [235M]
┃ ┃ ┣━━datasets2 [152.9G]
┃ ┃ ┃ ┣━━ImageNet2012 [144G]
┃ ┃ ┃ ┣━━lsun-master.zip [5.3G]
┃ ┃ ┃ ┗━━VOC.zip [3.6G]
┃ ┃ ┣━━datasets3 [27.2G]
┃ ┃ ┃ ┣━━celeba.zip [21.5G]
┃ ┃ ┃ ┣━━cifar.zip [646.6M]
┃ ┃ ┃ ┣━━sbd.zip [3.1G]
┃ ┃ ┃ ┗━━sbu.zip [2G]
┃ ┃ ┣━━必须下载datasets4和datasets2中的LSUN,其他按需下载.txt [0B]
┃ ┃ ┗━━datasets4.zip [183.8M]
┃ ┣━━WEEK 11 – WEEK 14 [34.3M]
┃ ┃ ┣━━torch_receptive_field [8.2K]
┃ ┃ ┃ ┣━━__init__.py [101B]
┃ ┃ ┃ ┗━━receptive_field.py [8.1K]
┃ ┃ ┣━━16.14 – END(5月9日更新).ipynb [68.5K]
┃ ┃ ┣━━16.7~16.13.ipynb [30K]
┃ ┃ ┣━━17.1 – 17.3.ipynb [947K]
┃ ┃ ┣━━17.4 & 17.5.ipynb [265.7K]
┃ ┃ ┣━━Lesson 16 计算机视觉开篇(下)(5月9日更新).pdf [13.8M]
┃ ┃ ┗━━Lesson 17 深度视觉进阶(上)V7 6月16日更新.pdf [19.2M]
┃ ┣━━WEEK 2 [9.7M]
┃ ┃ ┣━━Lesson 5.基本优化思想与最小二乘法.ipynb [180.3K]
┃ ┃ ┣━━Lesson 6.动态计算图与梯度下降入门.ipynb [216.7K]
┃ ┃ ┣━━LESSON 7 认识深度学习,认识PyTorch.pdf [7.6M]
┃ ┃ ┗━━LESSON 8 单层神经网络.pdf [1.7M]
┃ ┣━━WEEK 3、4 [283.8M]
┃ ┃ ┣━━MINST-FASHION数据集 [278.6M]
┃ ┃ ┃ ┣━━FashionMNIST [134.7M]
┃ ┃ ┃ ┃ ┣━━processed [52.9M]
┃ ┃ ┃ ┃ ┃ ┣━━test.pt [7.6M]
┃ ┃ ┃ ┃ ┃ ┗━━training.pt [45.3M]
┃ ┃ ┃ ┃ ┗━━raw [81.9M]
┃ ┃ ┃ ┃ ┣━━t10k-images-idx3-ubyte [7.5M]
┃ ┃ ┃ ┃ ┣━━t10k-images-idx3-ubyte.gz [4.2M]
┃ ┃ ┃ ┃ ┣━━t10k-labels-idx1-ubyte [9.8K]
┃ ┃ ┃ ┃ ┣━━t10k-labels-idx1-ubyte.gz [5K]
┃ ┃ ┃ ┃ ┣━━train-images-idx3-ubyte [44.9M]
┃ ┃ ┃ ┃ ┣━━train-images-idx3-ubyte.gz [25.2M]
┃ ┃ ┃ ┃ ┣━━train-labels-idx1-ubyte [58.6K]
┃ ┃ ┃ ┃ ┗━━train-labels-idx1-ubyte.gz [28.8K]
┃ ┃ ┃ ┗━━creditcard.csv [143.8M]
┃ ┃ ┣━━Lesson 10 神经网络的损失函数.pdf [1M]
┃ ┃ ┣━━Lesson 11 神经网络的学习.pdf [2.6M]
┃ ┃ ┗━━Lesson 9 深层神经网络.pdf [1.5M]
┃ ┣━━WEEK 5 [968.9K]
┃ ┃ ┣━━Lesson 12.0 深度学习基础网络手动搭建与快速实现.ipynb [7.1K]
┃ ┃ ┣━━Lesson 12.1 深度学习建模实验中数据集创建函数的创建与使用.ipynb [290.8K]
┃ ┃ ┣━━Lesson 12.2 PyTorch深度学习建模可视化工具TensorBoard的安装与使用.ipynb [13.7K]
┃ ┃ ┣━━Lesson 12.3 线性回归建模实验.ipynb [32K]
┃ ┃ ┣━━Lesson 12.4 逻辑回归建模实验.ipynb [276.5K]
┃ ┃ ┣━━Lesson 12.5 softmax回归建模实验.ipynb [338.3K]
┃ ┃ ┗━━torchLearning.py [10.5K]
┃ ┣━━WEEK 6 [717.2K]
┃ ┃ ┣━━Lesson 13.1 深度学习建模目标与性能评估理论.ipynb [130.9K]
┃ ┃ ┗━━Lesson 13.2 模型拟合度概念介绍与欠拟合模型的结构调整策略.ipynb [586.3K]
┃ ┣━━WEEK 7(5月20日更新torchlearning.py [895.8K]
┃ ┃ ┣━━【加餐】损失函数的随机创建现象详解.ipynb [41.9K]
┃ ┃ ┣━━Lesson 13.3 梯度不平稳性与Glorot条件.ipynb [304.1K]
┃ ┃ ┣━━Lesson 13.4 Dead ReLU Problem与学习率优化.ipynb [169.2K]
┃ ┃ ┣━━Lesson 13.5 Xavier方法与kaiming方法(HE初始化).ipynb [324K]
┃ ┃ ┗━━torchLearning.py [56.7K]
┃ ┣━━WEEK 8 [960.6K]
┃ ┃ ┣━━Lesson 14.1 数据归一化与Batch Normalization理论基础.ipynb [341.9K]
┃ ┃ ┣━━Lesson 14.2 Batch Normalization在PyTorch中的实现.ipynb [198.7K]
┃ ┃ ┗━━Lesson 14.3 Batch Normalization综合调参实战.ipynb [420K]
┃ ┗━━WEEK 9 & WEEK 10 [85.4M]
┃ ┣━━图像 [1.1M]
┃ ┃ ┣━━blue-peacock.jpg [825.2K]
┃ ┃ ┗━━edge detection.PNG [274.7K]
┃ ┣━━WEEK 10-WEEK 14 CV论文包 [70.3M]
┃ ┃ ┣━━从数学的角度理解卷积&卷积神经网络 [1.2M]
┃ ┃ ┃ ┣━━The Loss Surfaces of Multilayer Networks.pdf [754.4K]
┃ ┃ ┃ ┗━━understanding convolutional neural networks with a mathematical model.pdf [521K]
┃ ┃ ┣━━关于深层神经网络vs浅层神经网络的研究 [7.9M]
┃ ┃ ┃ ┣━━Comparing Shallow versus Deep Neural Network Architectures for autometic music genre classification.pdf [1M]
┃ ┃ ┃ ┣━━Deep vs. Shallow Networks_ an Approximation Theory Perspective.pdf [960.3K]
┃ ┃ ┃ ┣━━Layers_Modification_of_Convolutional_Neural_Networ.pdf [996.7K]
┃ ┃ ┃ ┣━━Learning Functions_ When Is Deep Better Than Shallow arXiv.pdf [1.1M]
┃ ┃ ┃ ┣━━On the Complexity of shallow and deep neural network classifiers.pdf [1.5M]
┃ ┃ ┃ ┣━━When and Why are Deep Networks better than shallow ones_.pdf [669.5K]
┃ ┃ ┃ ┗━━Why_and_when_can_deep-but_not_shallow-networks_avo.pdf [1.7M]
┃ ┃ ┣━━卷积神经网络的可视化 [34.6M]
┃ ┃ ┃ ┗━━Visualizing and Understanding Convolutional Networks.pdf [34.6M]
┃ ┃ ┣━━卷积神经网络的优化 [9.2M]
┃ ┃ ┃ ┣━━Comparative_Study_of_First_Order_Optimizers_for_Im.pdf [573.2K]
┃ ┃ ┃ ┣━━effects of padding on LSTM and CNNs.pdf [357.4K]
┃ ┃ ┃ ┣━━Evaluation of Pooling Operations in.pdf [284K]
┃ ┃ ┃ ┣━━Improving_the_Separability_of_Deep_Features_with_Discriminative Convolution Filters for.pdf [7.5M]
┃ ┃ ┃ ┗━━understand the effective receptive field in deep CNN.pdf [583.8K]
┃ ┃ ┣━━[1998 LeNet5 Original Paper]Gradient-Based Learning Applied to Document Recognition.pdf [4.2M]
┃ ┃ ┣━━[2012 AlexNet Original Paper]NIPS-2012-imagenet-classification-with-deep-convolutional-neural-networks-Paper.pdf [1.4M]
┃ ┃ ┣━━[2014 GoogLeNet Original Paper]Going deeper with convolutions.pdf [1.1M]
┃ ┃ ┣━━[2014 NiN Original Paper]Network in Network.pdf [550.7K]
┃ ┃ ┣━━[2014 VGG Original Paper]Very deep convolutional networks for large-scale image recognition.pdf [195.3K]
┃ ┃ ┣━━[2015 ResNet Original Paper]Deep Residual Learning for Image Recognition.pdf [800.2K]
┃ ┃ ┣━━Recent Advances in Convolutional Neural Networks.pdf [4.4M]
┃ ┃ ┣━━Striving for Simplicity The All Convolutional Net.pdf [4M]
┃ ┃ ┗━━Xception Deep Learning with Depthwise Separable Convolutions.pdf [785.6K]
┃ ┣━━Lesson 15.1 学习率调度基本概念与手动实现方法.ipynb [128.2K]
┃ ┣━━Lesson 15.2 学习率调度在PyTorch中的实现方法.ipynb [158.2K]
┃ ┣━━Lesson 16 计算机视觉入门(上).pdf [8.2M]
┃ ┗━━Lesson 16.1~16.6.ipynb [5.6M]
┣━━01.视频 [67.1G]
┃ ┣━━01.2021PyTorch深度学习实战.abc [523.6M]
┃ ┣━━02.2021PyTorch深度学习实战.abc [311.8M]
┃ ┣━━03.2021PyTorch深度学习实战.abc [460.6M]
┃ ┣━━04.2021PyTorch深度学习实战.abc [1.1G]
┃ ┣━━05.2021PyTorch深度学习实战.abc [861.3M]
┃ ┣━━06.2021PyTorch深度学习实战.abc [871.3M]
┃ ┣━━07.2021PyTorch深度学习实战.abc [1.2G]
┃ ┣━━08.2021PyTorch深度学习实战.abc [1.5G]
┃ ┣━━09.2021PyTorch深度学习实战.abc [1.3G]
┃ ┣━━10.2021PyTorch深度学习实战.abc [664.5M]
┃ ┣━━11.2021PyTorch深度学习实战.abc [616M]
┃ ┣━━12.2021PyTorch深度学习实战.abc [302.2M]
┃ ┣━━13.2021PyTorch深度学习实战.abc [851.1M]
┃ ┣━━14.2021PyTorch深度学习实战.abc [354.6M]
┃ ┣━━15.2021PyTorch深度学习实战.abc [582.9M]
┃ ┣━━16.2021PyTorch深度学习实战.abc [186.3M]
┃ ┣━━17.2021PyTorch深度学习实战.abc [570.2M]
┃ ┣━━18.2021PyTorch深度学习实战.abc [1.1G]
┃ ┣━━19.2021PyTorch深度学习实战.abc [692.1M]
┃ ┣━━20.2021PyTorch深度学习实战.abc [392M]
┃ ┣━━21.2021PyTorch深度学习实战.abc [1.3G]
┃ ┣━━22.2021PyTorch深度学习实战.abc [905.1M]
┃ ┣━━23.2021PyTorch深度学习实战.abc [553.7M]
┃ ┣━━24.2021PyTorch深度学习实战.abc [767M]
┃ ┣━━25.2021PyTorch深度学习实战.abc [771.3M]
┃ ┣━━26.2021PyTorch深度学习实战.abc [708.2M]
┃ ┣━━27.2021PyTorch深度学习实战.abc [561.8M]
┃ ┣━━28.2021PyTorch深度学习实战.abc [780.6M]
┃ ┣━━29.2021PyTorch深度学习实战.abc [664.8M]
┃ ┣━━30.2021PyTorch深度学习实战.abc [550.3M]
┃ ┣━━31.2021PyTorch深度学习实战.abc [1G]
┃ ┣━━32.2021PyTorch深度学习实战.abc [221.3M]
┃ ┣━━33.2021PyTorch深度学习实战.abc [1.4G]
┃ ┣━━34.2021PyTorch深度学习实战.abc [418.9M]
┃ ┣━━35.2021PyTorch深度学习实战.abc [665.6M]
┃ ┣━━36.2021PyTorch深度学习实战.abc [968.3M]
┃ ┣━━37.2021PyTorch深度学习实战.abc [1.2G]
┃ ┣━━38.2021PyTorch深度学习实战.abc [1.3G]
┃ ┣━━39.2021PyTorch深度学习实战.abc [1.3G]
┃ ┣━━40.2021PyTorch深度学习实战.abc [455.4M]
┃ ┣━━41.2021PyTorch深度学习实战.abc [824.3M]
┃ ┣━━42.2021PyTorch深度学习实战.abc [611.3M]
┃ ┣━━43.2021PyTorch深度学习实战.abc [694.9M]
┃ ┣━━44.2021PyTorch深度学习实战.abc [1G]
┃ ┣━━45.2021PyTorch深度学习实战.abc [1.2G]
┃ ┣━━46.2021PyTorch深度学习实战.abc [1.7G]
┃ ┣━━47.2021PyTorch深度学习实战.abc [1.7G]
┃ ┣━━48.2021PyTorch深度学习实战.abc [1.3G]
┃ ┣━━49.2021PyTorch深度学习实战.abc [1.1G]
┃ ┣━━50.2021PyTorch深度学习实战.abc [1.2G]
┃ ┣━━51.2021PyTorch深度学习实战.abc [693.2M]
┃ ┣━━52.2021PyTorch深度学习实战.abc [684.7M]
┃ ┣━━53.2021PyTorch深度学习实战.abc [418.1M]
┃ ┣━━54.2021PyTorch深度学习实战.abc [325.6M]
┃ ┣━━55.2021PyTorch深度学习实战.abc [485.6M]
┃ ┣━━56.2021PyTorch深度学习实战.abc [632.8M]
┃ ┣━━57.2021PyTorch深度学习实战.abc [476.6M]
┃ ┣━━58.2021PyTorch深度学习实战.abc [409.1M]
┃ ┣━━59.2021PyTorch深度学习实战.abc [749.6M]
┃ ┣━━60.2021PyTorch深度学习实战.abc [625.6M]
┃ ┣━━61.2021PyTorch深度学习实战.abc [618.8M]
┃ ┣━━62.2021PyTorch深度学习实战.abc [630.1M]
┃ ┣━━63.2021PyTorch深度学习实战.abc [511.9M]
┃ ┣━━64.2021PyTorch深度学习实战.abc [377.2M]
┃ ┣━━65.2021PyTorch深度学习实战.abc [381.5M]
┃ ┣━━66.2021PyTorch深度学习实战.abc [672.1M]
┃ ┣━━67.2021PyTorch深度学习实战.abc [573.8M]
┃ ┣━━68.2021PyTorch深度学习实战.abc [697.5M]
┃ ┣━━69.2021PyTorch深度学习实战.abc [1.1G]
┃ ┣━━70.2021PyTorch深度学习实战.abc [519.9M]
┃ ┣━━71.2021PyTorch深度学习实战.abc [466.9M]
┃ ┣━━72.2021PyTorch深度学习实战.abc [1G]
┃ ┣━━73.2021PyTorch深度学习实战.abc [1.3G]
┃ ┣━━74.2021PyTorch深度学习实战.abc [336.3M]
┃ ┣━━75.2021PyTorch深度学习实战.abc [475.2M]
┃ ┣━━76.2021PyTorch深度学习实战.abc [482.3M]
┃ ┣━━77.2021PyTorch深度学习实战.abc [953M]
┃ ┣━━78.2021PyTorch深度学习实战.abc [568.4M]
┃ ┣━━79.2021PyTorch深度学习实战.abc [334.4M]
┃ ┣━━80.2021PyTorch深度学习实战.abc [430.5M]
┃ ┣━━81.2021PyTorch深度学习实战.abc [478.1M]
┃ ┣━━82.2021PyTorch深度学习实战.abc [580.3M]
┃ ┣━━83.2021PyTorch深度学习实战.abc [260.3M]
┃ ┣━━84.2021PyTorch深度学习实战.abc [435.6M]
┃ ┣━━85.2021PyTorch深度学习实战.abc [291.2M]
┃ ┣━━86.2021PyTorch深度学习实战.abc [703M]
┃ ┣━━87.2021PyTorch深度学习实战.abc [431.6M]
┃ ┣━━88.2021PyTorch深度学习实战.abc [312.3M]
┃ ┣━━89.2021PyTorch深度学习实战.abc [888M]
┃ ┣━━90.2021PyTorch深度学习实战.abc [408.7M]
┃ ┣━━91.2021PyTorch深度学习实战.abc [956M]
┃ ┣━━92.2021PyTorch深度学习实战.abc [1003.9M]
┃ ┗━━93.2021PyTorch深度学习实战.abc [947.6M]
┗━━加密播放器下载地址.txt [105B]