【加密】ZX004 – NLP5期[32G]
┣━━00.试看 [869.4M]
┃ ┣━━任务012-任务016第2章 20191013 NLP课程介绍(Lecture1).mp4 [262.8M]
┃ ┣━━任务017-任务021第3章 20191016 算法复杂度 (Lecture2).mp4 [321.7M]
┃ ┣━━任务045: 决策树03(上).mp4 [28.9M]
┃ ┣━━任务061: XGBoost02下.mp4 [93.8M]
┃ ┣━━任务078: GloveELMo-02.mp4 [66.5M]
┃ ┗━━任务094: Graphical Model.mp4 [95.7M]
┣━━01.视频 [30.4G]
┃ ┣━━任务001-任务011第1章 课程试听(正式学员不需要听的,后面有直播讲解).txt [0B]
┃ ┣━━任务012-任务016第2章 20191013 NLP课程介绍(Lecture1).vep [262.8M]
┃ ┣━━任务017-任务021第3章 20191016 算法复杂度 (Lecture2).vep [321.7M]
┃ ┣━━任务022-任务024第4章 20191019 逻辑回归(Lecture3).vep [267.1M]
┃ ┣━━任务025: 哈希表.vep [59.6M]
┃ ┣━━任务026: 搜索树.vep [67.8M]
┃ ┣━━任务027: 堆.vep [41.3M]
┃ ┣━━任务028: Searching and Mining Trillions of -01.vep [161.1M]
┃ ┣━━任务029: Searching and Mining Trillions of-02.vep [155.2M]
┃ ┣━━任务030: Searching and Mining Trillions of -03.vep [62.9M]
┃ ┣━━任务031-036第7章 20191023 SVM-续(Lecture4).vep [317.9M]
┃ ┣━━任务037: Optimization.vep [59.8M]
┃ ┣━━任务038: ConvexSet ConvexFunction.vep [109.7M]
┃ ┣━━任务039: Transportation Problem.vep [159.6M]
┃ ┣━━任务040: Portfolio Optimization.vep [110M]
┃ ┣━━任务041: GBDT&XGBOOST1.vep [69.5M]
┃ ┣━━任务042: GBDT&XGBOOST2.vep [114.1M]
┃ ┣━━任务043: 决策树01.vep [44.8M]
┃ ┣━━任务044: 决策树02.vep [32.7M]
┃ ┣━━任务045: 决策树03(上).vep [28.9M]
┃ ┣━━任务045: 决策树03(下).vep [12.1M]
┃ ┣━━任务046: 论文 From Word Embeddings To Document Distances.vep [141.2M]
┃ ┣━━任务047: Set Cover Problem.vep [62.1M]
┃ ┣━━任务048: Approximation and Relaxation.vep [51.3M]
┃ ┣━━任务049: L-Lipschitz条件以及定理.vep [47.2M]
┃ ┣━━任务050: Derivation(1-2).vep [52M]
┃ ┣━━任务051: Derivation(3).vep [235.5M]
┃ ┣━━任务052-055第13章 20191102 凸优化(3)(Lecture7).vep [295.1M]
┃ ┣━━任务056: 线性规划Review(1).vep [145.4M]
┃ ┣━━任务057: 线性规划Review(2)上.vep [91.2M]
┃ ┣━━任务057: 线性规划Review(2)下.vep [29.1M]
┃ ┣━━任务058: Adam01.vep [76.1M]
┃ ┣━━任务059: Adam02.vep [110M]
┃ ┣━━任务060: XGBoost01.vep [145.9M]
┃ ┣━━任务061: XGBoost02上.vep [45.1M]
┃ ┣━━任务061: XGBoost02下.vep [93.8M]
┃ ┣━━任务062: LMNN.vep [115.2M]
┃ ┣━━任务063: QP实战.vep [74.4M]
┃ ┣━━任务064: LP实战-01.vep [35.4M]
┃ ┣━━任务065: LP实战-02.vep [27.5M]
┃ ┣━━任务066: Segmentation Method 1:Max Matching.vep [24.1M]
┃ ┣━━任务067: Segmentation Method 2:Incorporate Semantic.vep [89.1M]
┃ ┣━━任务068: Spell Correction.vep [38.1M]
┃ ┣━━任务069: How to filter How to Select.vep [45.5M]
┃ ┣━━任务070: Filtering Words.vep [34.4M]
┃ ┣━━任务071: Sentence Similarity.vep [124.7M]
┃ ┣━━任务072: Noisy Channel Model.vep [51.2M]
┃ ┣━━任务073: Language Model.vep [87M]
┃ ┣━━任务074: Add-one Smoothing(Laplace Smoothing).vep [113.3M]
┃ ┣━━任务075: Interpolation.vep [142M]
┃ ┣━━任务076: 各类文本相似度计算技术Survey.vep [113.6M]
┃ ┣━━任务077: GloveELMo-01.vep [42.9M]
┃ ┣━━任务078: GloveELMo-02.vep [66.5M]
┃ ┣━━任务079: Mining and Summarizing Customer Reviews01.vep [75.1M]
┃ ┣━━任务080: Mining and Summarizing Customer Reviews02.vep [58.5M]
┃ ┣━━任务081: Mining and Summarizing Customer Reviews03.vep [44.2M]
┃ ┣━━任务082: Recap Retrieval-based QA System.vep [90.7M]
┃ ┣━━任务083: Data Representation.vep [57M]
┃ ┣━━任务084: MLE for Complete and Incomplete Case.vep [57.3M]
┃ ┣━━任务085: EM Derivation.vep [89M]
┃ ┣━━任务086: Remarks on EM.vep [35.2M]
┃ ┣━━任务087: K-means.vep [28.4M]
┃ ┣━━任务088: qa系统技术剖析(1)-01.vep [51.4M]
┃ ┣━━任务089: qa系统技术剖析(1)-02.vep [78.5M]
┃ ┣━━任务090: qa系统技术剖析(2)-01.vep [158.9M]
┃ ┣━━任务091: qa系统技术剖析(2)-02.vep [127.3M]
┃ ┣━━任务092: Reading Wikipedia to Answer Open-Domain Q01.vep [68.7M]
┃ ┣━━任务093: Reading Wikipedia to Answer Open-Domain Q02.vep [83.9M]
┃ ┣━━任务094: Graphical Model.vep [95.7M]
┃ ┣━━任务095: Hidden Markov Model(HMM).vep [35.9M]
┃ ┣━━任务096: Parameters of HMM.vep [30.2M]
┃ ┣━━任务097: Finding Best Z.vep [37.5M]
┃ ┣━━任务098: Finding Best Z Viterbi.vep [66.3M]
┃ ┣━━任务099: F B Aigorithm.vep [158.4M]
┃ ┣━━任务100: Forward Aigorithm.vep [46.5M]
┃ ┣━━任务101: Backward Aigorithm.vep [58.2M]
┃ ┣━━任务102: Review of F BAigorithm.vep [42.4M]
┃ ┣━━任务103: Estimate A.vep [61.2M]
┃ ┣━━任务104: 不同的语言模型Smoothing技术-01.vep [61.8M]
┃ ┣━━任务105: 不同的语言模型Smoothing技术-02.vep [63.8M]
┃ ┣━━任务106: 不同的语言模型Smoothing技术-03.vep [51.5M]
┃ ┣━━任务107: 基于HMM的词性分析-01.vep [49.6M]
┃ ┣━━任务108: 基于HMM的词性分析-02.vep [116.4M]
┃ ┣━━任务109: GloVe-Global Vectors for Word Representation01.vep [92.2M]
┃ ┣━━任务110: GloVe-Global Vectors for Word Representation02.vep [94M]
┃ ┣━━任务111: Generative Discriminative Model1.vep [143.4M]
┃ ┣━━任务112: Generative Discriminative Model2.vep [71.9M]
┃ ┣━━任务113: 有向图VS无向图.vep [25.7M]
┃ ┣━━任务114: Joint Probability.vep [110.5M]
┃ ┣━━任务115: Road Map.vep [53.8M]
┃ ┣━━任务116: Log-Linear Model.vep [57.4M]
┃ ┣━━任务117: Multinomial Logistic Regression.vep [89.4M]
┃ ┣━━任务118: 改成判别模型?.vep [28.4M]
┃ ┣━━任务119: Label Bias Problem.vep [110.3M]
┃ ┣━━任务120: Bi-LSTM+CRF-01.vep [55.9M]
┃ ┣━━任务121: Bi-LSTM+CRF-02.vep [137M]
┃ ┣━━任务122: Bidirectional LSTM-CRF Models for Sequence Tagging.vep [99.7M]
┃ ┣━━任务123: 回顾Log-Linear Model.vep [126.7M]
┃ ┣━━任务124: Inference Problem.vep [58.6M]
┃ ┣━━任务125: 参数的估计1.vep [31.5M]
┃ ┣━━任务126: 参数的估计2.vep [63.7M]
┃ ┣━━任务127: 参数的估计3.vep [81.3M]
┃ ┣━━任务128: 浅谈Bayesian Network-01.vep [59.3M]
┃ ┣━━任务129: 浅谈Bayesian Network-02.vep [87.4M]
┃ ┣━━任务130: Global Generation of Distributed Representation.vep [78.2M]
┃ ┣━━任务131: How to learn Word2Vec-Intuition.vep [13.5M]
┃ ┣━━任务132: Skip-Gram Model.vep [77.4M]
┃ ┣━━任务133: Negative Sampling.vep [76M]
┃ ┣━━任务134: Sum-Product Networks A New Deep Architecture01.vep [75.5M]
┃ ┣━━任务135: Sum-Product Networks A New Deep Architecture02.vep [69.4M]
┃ ┣━━任务136: 浅谈Markov Random Field (MRF)-01.vep [51M]
┃ ┣━━任务137: 浅谈Markov Random Field (MRF)-02.vep [54.5M]
┃ ┣━━任务138: Information Extraction.vep [50.8M]
┃ ┣━━任务139: More Applications.vep [41.8M]
┃ ┣━━任务140: Named Entity Recognition.vep [29.6M]
┃ ┣━━任务141: Create NER Recognizer.vep [17.9M]
┃ ┣━━任务142: Feature Engineering for Supervised Learning.vep [50.5M]
┃ ┣━━任务143: Feature Encoding.vep [78.3M]
┃ ┣━━任务144: 基于规则的关系抽取.vep [22.4M]
┃ ┣━━任务145: 监督学习的关系抽取.vep [74.9M]
┃ ┣━━任务146: Bootstrap.vep [173.6M]
┃ ┣━━任务147-任务149上.vep [407.5M]
┃ ┣━━任务147-任务149下.vep [200.1M]
┃ ┣━━任务150: Collecting training data Negative training data.vep [81.4M]
┃ ┣━━任务151: 实体消歧.vep [22.3M]
┃ ┣━━任务152: 实体统一.vep [104.6M]
┃ ┣━━任务153: 指代消解.vep [100.3M]
┃ ┣━━任务154: Relation Extraction with PCNN-01.vep [101.7M]
┃ ┣━━任务155: Relation Extraction with PCNN-02.vep [200.8M]
┃ ┣━━任务156: Snowball-Extracting Relations from Large Plain-01.vep [79.5M]
┃ ┣━━任务157: Snowball-Extracting Relations from Large Plain-02.vep [93.8M]
┃ ┣━━任务158: Parsing.vep [17.8M]
┃ ┣━━任务159: Generate Strings.vep [48.3M]
┃ ┣━━任务160: i.e. Old Machine Translation.vep [24M]
┃ ┣━━任务161: Transforming to CNF.vep [76.3M]
┃ ┣━━任务162: CKY Algorithm.vep [61.4M]
┃ ┣━━任务163: 知识图谱.vep [174.5M]
┃ ┣━━任务164: 知识图谱的应用.vep [61.4M]
┃ ┣━━任务165: 知识图谱在金融风控领域中的应用.vep [72.4M]
┃ ┣━━任务166: 数据的收集.vep [70.7M]
┃ ┣━━任务167: 知识图谱的设计.vep [118.9M]
┃ ┣━━任务168: 应用知识图谱.vep [146.2M]
┃ ┣━━任务169: 知识图谱在风控中的挑战.vep [40.7M]
┃ ┣━━任务170: 动态规划-01.vep [60.9M]
┃ ┣━━任务171: 动态规划-02上.vep [52.8M]
┃ ┣━━任务171: 动态规划-02下.vep [10.7M]
┃ ┣━━任务172: 文本领域特征工程-01.vep [115.1M]
┃ ┣━━任务173: 文本领域特征工程-02.vep [121.5M]
┃ ┣━━任务174: Translating Embeddings for Modeling Multi-rel-01.vep [56.8M]
┃ ┣━━任务175: Translating Embeddings for Modeling Multi-rel02.vep [75.7M]
┃ ┣━━任务176: KG for Education.vep [36.8M]
┃ ┣━━任务177: KG for 证券.vep [31.3M]
┃ ┣━━任务178: TransE for KG.vep [39.8M]
┃ ┣━━任务179: Node2Vec for KG.vep [41.1M]
┃ ┣━━任务180: Structural Deep Network Embedding.vep [91.1M]
┃ ┣━━任务181: Multi-layer Neural Network.vep [20.5M]
┃ ┣━━任务182: Universal Approximation Theorem.vep [36.2M]
┃ ┣━━任务183: What is Representation Learning.vep [22.6M]
┃ ┣━━任务184: What makes good representation-01.vep [54.9M]
┃ ┣━━任务185: What makes good representation-02.vep [125.2M]
┃ ┣━━任务186: What makes good representation-03.vep [114M]
┃ ┣━━任务187: What makes good representation-04.vep [58.9M]
┃ ┣━━任务188: Why Deep.vep [63.3M]
┃ ┣━━任务189: Recall Neural Network.vep [32.4M]
┃ ┣━━任务190: Essense of Backpropagation.vep [68M]
┃ ┣━━任务191: Gradient Computation01.vep [38.5M]
┃ ┣━━任务192: Gradient Computation02.vep [30.4M]
┃ ┣━━任务193: Gradient Computation03.vep [34.6M]
┃ ┣━━任务194: BP Processure.vep [19.3M]
┃ ┣━━任务195: Gradient Checking.vep [33.5M]
┃ ┣━━任务196: Why Deep Learning Hard to Train.vep [71.9M]
┃ ┣━━任务197: GPU使用 + 简单神经网络01.vep [9M]
┃ ┣━━任务198: GPU使用 + 简单神经网络-02.vep [122.2M]
┃ ┣━━任务199: Why Need Recurrent Neural Network.vep [104M]
┃ ┣━━任务200: RNN vs HMM.vep [48.6M]
┃ ┣━━任务201: Vanishing、Exploding Gradient.vep [39.4M]
┃ ┣━━任务202: Long Short Term Memory Network.vep [94.7M]
┃ ┣━━任务203: Gated Recurrent Unit.vep [98.6M]
┃ ┣━━任务204: Statistical Machine Translation.vep [22.8M]
┃ ┣━━任务205: Seq2Seq Model.vep [73.8M]
┃ ┣━━任务206: Inference Decoding.vep [18.9M]
┃ ┣━━任务207: Beam Search.vep [110.6M]
┃ ┣━━任务208: 启发式算法01.vep [95M]
┃ ┣━━任务209: 启发式算法02.vep [135.7M]
┃ ┣━━任务210: Bottleneck Problem of RNN.vep [124M]
┃ ┣━━任务211: pytorch讲解01.vep [117.8M]
┃ ┣━━任务212: pytorch讲解02.vep [153.5M]
┃ ┣━━任务213: 对话系统01.vep [69.2M]
┃ ┣━━任务214: 对话系统02.vep [96.9M]
┃ ┣━━任务215: 对话系统03.vep [89.5M]
┃ ┣━━任务216: Auto-Encoding Variational Bayes (VAE)01.vep [70.7M]
┃ ┣━━任务217: Auto-Encoding Variational Bayes (VAE)02.vep [101.9M]
┃ ┣━━任务218: 深度学习中的层次表示.vep [83.6M]
┃ ┣━━任务219: Attention.vep [13.5M]
┃ ┣━━任务220: 看图说话.vep [90M]
┃ ┣━━任务221: 机器翻译.vep [66.7M]
┃ ┣━━任务222: Transformer.vep [27.6M]
┃ ┣━━任务223: How does Transformer implement long-term depende.vep [93.8M]
┃ ┣━━任务224: Positional Encoding.vep [50.4M]
┃ ┣━━任务225: Introduction to Transfer Learing-01上.vep [42.3M]
┃ ┣━━任务225: Introduction to Transfer Learing-01下.vep [43.1M]
┃ ┣━━任务226: Introduction to Transfer Learing-02.vep [333.5M]
┃ ┣━━任务227: Teaching machines to read and comprehend (2015).vep [106.6M]
┃ ┣━━任务228: 项目一讲解-01.vep [220.4M]
┃ ┣━━任务229: 项目一讲解-02上.vep [114.8M]
┃ ┣━━任务229: 项目一讲解-02下.vep [43.1M]
┃ ┣━━任务230: Transformer(2)-01.vep [136.2M]
┃ ┣━━任务230: Transformer(3).vep [136.2M]
┃ ┣━━任务231: Transformer(2)-02.vep [161.3M]
┃ ┣━━任务231: Transformer(3).vep [161.3M]
┃ ┣━━任务232: Transformer(2)-03.vep [50M]
┃ ┣━━任务232: Transformer(3).vep [50M]
┃ ┣━━任务233: Transformer(2)-04.vep [77.2M]
┃ ┣━━任务233: Transformer(3).vep [77.2M]
┃ ┣━━任务234: Transformer(2)-05.vep [150.2M]
┃ ┣━━任务234: Transformer(3).vep [150.2M]
┃ ┣━━任务235: LSTM的实现(源码讲解)-01.vep [137.4M]
┃ ┣━━任务235: LSTM的实现(源码讲解)-01(1).vep [137.4M]
┃ ┣━━任务236: LSTM的实现(源码讲解)-02上.vep [45.8M]
┃ ┣━━任务236: LSTM的实现(源码讲解)-02上(1).vep [45.8M]
┃ ┣━━任务236: LSTM的实现(源码讲解)-02下.vep [54.1M]
┃ ┣━━任务236: LSTM的实现(源码讲解)-02下(1).vep [54.1M]
┃ ┣━━任务237: learning deep transformer models for machine tr-01.vep [83.3M]
┃ ┣━━任务237: learning deep transformer models for machine tr-01(1).vep [83.3M]
┃ ┣━━任务238: learning deep transformer models for machine tr-02.vep [82.2M]
┃ ┣━━任务238: learning deep transformer models for machine tr-02(1).vep [82.2M]
┃ ┣━━任务239: project2(知识图谱)讲解上.vep [261M]
┃ ┣━━任务239: project2(知识图谱)讲解上(1).vep [261M]
┃ ┣━━任务239: project2(知识图谱)讲解下.vep [125.2M]
┃ ┣━━任务239: project2(知识图谱)讲解下(1).vep [125.2M]
┃ ┣━━任务240: Transformer + GPT-01.vep [111.1M]
┃ ┣━━任务240: Transformer + GPT-01(1).vep [111.1M]
┃ ┣━━任务241: Transformer + GPT-02.vep [233.8M]
┃ ┣━━任务241: Transformer + GPT-02(1).vep [233.8M]
┃ ┣━━任务242: Transformer + GPT-03.vep [396.1M]
┃ ┣━━任务242: Transformer + GPT-03(1).vep [396.1M]
┃ ┣━━任务243: XLNet1-01.vep [91.1M]
┃ ┣━━任务243: XLNet1-01(1).vep [91.1M]
┃ ┣━━任务244: XLNet1-02.vep [103M]
┃ ┣━━任务244: XLNet1-02(1).vep [103M]
┃ ┣━━任务245: XLNet1-03.vep [210.1M]
┃ ┣━━任务245: XLNet1-03(1).vep [210.1M]
┃ ┣━━任务246: BERT的实战(1)-01.vep [96.8M]
┃ ┣━━任务246: BERT的实战(1)-01(1).vep [96.8M]
┃ ┣━━任务247: BERT的实战(1)-02.vep [187.1M]
┃ ┣━━任务247: BERT的实战(1)-02(1).vep [187.1M]
┃ ┣━━任务248: Graph Transformer Networks-01.vep [79.1M]
┃ ┣━━任务248: Graph Transformer Networks-01(1).vep [79.1M]
┃ ┣━━任务249: Graph Transformer Networks-02.vep [168.3M]
┃ ┣━━任务249: Graph Transformer Networks-02(1).vep [168.3M]
┃ ┣━━任务250: 贝叶斯模型之LDA-01.vep [56.2M]
┃ ┣━━任务250: 贝叶斯模型之LDA-01(1).vep [56.2M]
┃ ┣━━任务251: 贝叶斯模型之LDA-02.vep [64.2M]
┃ ┣━━任务251: 贝叶斯模型之LDA-02(1).vep [64.2M]
┃ ┣━━任务252: 贝叶斯模型之LDA-03.vep [70.8M]
┃ ┣━━任务252: 贝叶斯模型之LDA-03(1).vep [70.8M]
┃ ┣━━任务253: 贝叶斯模型之LDA-04.vep [39.7M]
┃ ┣━━任务253: 贝叶斯模型之LDA-04(1).vep [39.7M]
┃ ┣━━任务254: 贝叶斯模型之LDA-05.vep [96.4M]
┃ ┣━━任务254: 贝叶斯模型之LDA-05(1).vep [96.4M]
┃ ┣━━任务255: 贝叶斯模型之吉布斯采样-01.vep [58M]
┃ ┣━━任务255: 贝叶斯模型之吉布斯采样-01(1).vep [58M]
┃ ┣━━任务256: 贝叶斯模型之吉布斯采样-02.vep [93.6M]
┃ ┣━━任务256: 贝叶斯模型之吉布斯采样-02(1).vep [93.6M]
┃ ┣━━任务257: 贝叶斯模型之吉布斯采样-03.vep [145.4M]
┃ ┣━━任务257: 贝叶斯模型之吉布斯采样-03(1).vep [145.4M]
┃ ┣━━任务258: 贝叶斯模型之吉布斯采样-04.vep [82.5M]
┃ ┣━━任务258: 贝叶斯模型之吉布斯采样-04(1).vep [82.5M]
┃ ┣━━任务259: XLNet源代码讲解.vep [467.8M]
┃ ┣━━任务259: XLNet源代码讲解(1).vep [467.8M]
┃ ┣━━任务260: XLNet的实战: 如何使用huggingface的XLNET来解决具体问题-01上.vep [2.3M]
┃ ┣━━任务260: XLNet的实战: 如何使用huggingface的XLNET来解决具体问题-01上(1).vep [2.3M]
┃ ┣━━任务260: XLNet的实战: 如何使用huggingface的XLNET来解决具体问题-01下.vep [113.7M]
┃ ┣━━任务260: XLNet的实战: 如何使用huggingface的XLNET来解决具体问题-01下(1).vep [113.7M]
┃ ┣━━任务261: XLNet的实战: 如何使用huggingface的XLNET来解决具体问题-02.vep [197.5M]
┃ ┣━━任务262: Language models are unsupervised multitask l.vep [133M]
┃ ┣━━任务263: 吉布斯采样的实现-01.vep [201.9M]
┃ ┣━━任务264: 吉布斯采样的实现-02.vep [369.2M]
┃ ┣━━任务265: 吉布斯采样的实现-03.vep [160.3M]
┃ ┣━━任务266: 吉布斯采样的实现-04.vep [159.2M]
┃ ┣━━任务267: Introduction to Bayesian Neural Network.vep [309.9M]
┃ ┣━━任务268: LDA的实战案例.vep [247.4M]
┃ ┣━━任务269: Markov Chain Monte Carlo.vep [193.5M]
┃ ┣━━任务270: 情感分析项目.vep [213.2M]
┃ ┣━━任务271: 贝叶斯模型(4-5)-01.vep [95.4M]
┃ ┣━━任务272: 贝叶斯模型(4-5)-02.vep [79.1M]
┃ ┣━━任务273: 贝叶斯模型(4-5)-03.vep [175.4M]
┃ ┣━━任务274: 贝叶斯模型(4-5)-04.vep [123.5M]
┃ ┣━━任务275: GAN.vep [192.7M]
┃ ┣━━任务276: SGLD.vep [308.8M]
┃ ┣━━任务277: active learning-01.vep [60.8M]
┃ ┣━━任务278: active learning-02.vep [52.6M]
┃ ┣━━任务279: Large Scale Bayesian Learning-01.vep [83.1M]
┃ ┣━━任务280: Large Scale Bayesian Learning-02.vep [112.7M]
┃ ┣━━任务281: Large Scale Bayesian Learning-03.vep [206.6M]
┃ ┣━━任务282: Bayesian LSTM模型讲解上.vep [124.1M]
┃ ┣━━任务282: Bayesian LSTM模型讲解下.vep [52.4M]
┃ ┣━━任务283: 课程总结-01.vep [160.2M]
┃ ┣━━任务284: 课程总结-02.vep [110.8M]
┃ ┣━━任务285: 课程总结-03.vep [60.9M]
┃ ┣━━任务286: 课程总结-04.vep [148.2M]
┃ ┣━━任务287: 课程总结-05.vep [62.3M]
┃ ┣━━任务288: 项目四-机器翻译讲解.vep [349.7M]
┃ ┣━━任务289: 工业界代码编写Best Practice.vep [237M]
┃ ┣━━任务290: 工业界模型部署Best Practice-01.vep [49.8M]
┃ ┣━━任务291: 工业界模型部署Best Practice-02.vep [129M]
┃ ┣━━任务292: 项目五讲解-01.vep [71.5M]
┃ ┗━━任务293: 项目五讲解-02.vep [167M]
┗━━00.资料.zip [703.2M]

发表评论

后才能评论

购买后资源页面显示下载按钮和分享密码,点击后自动跳转百度云链接,输入密码后自行提取资源。

本章所有带有【尊享】和【加密】的课程均为加密课程,加密课程需要使用专门的播放器播放。

联系微信客服获取,一个授权账号可以激活三台设备,请在常用设备上登录账号。

可能资源被百度网盘黑掉,联系微信客服添加客服百度网盘好友后分享。

教程属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源