【尊享】ZX005 – 机器学习高阶训练营[32.7G]
┣━━00.试看 [369.3M]
┃ ┣━━免费 任务001: MLcamp_course_info.mp4 [167.5M]
┃ ┣━━免费 任务002: 课程介绍.mp4 [53.6M]
┃ ┗━━免费 任务003: 凸集、凸函数、判定凸函数.mp4 [148.2M]
┣━━01.视频 [32.1G]
┃ ┣━━免费 任务001: MLcamp_course_info.vep [167.5M]
┃ ┣━━免费 任务002: 课程介绍.vep [53.6M]
┃ ┣━━免费 任务003: 凸集、凸函数、判定凸函数.vep [148.2M]
┃ ┣━━任务004: Transportation Problem.vep [67.7M]
┃ ┣━━任务005: Portfolio Optimization.vep [108M]
┃ ┣━━任务006: Set Cover Problem.vep [53.6M]
┃ ┣━━任务007: Duality.vep [194M]
┃ ┣━━任务008: 答疑部分.vep [97.9M]
┃ ┣━━任务009: 从词嵌入到文档距离01.vep [108.9M]
┃ ┣━━任务010: 从词嵌入到文档距离02.vep [127.1M]
┃ ┣━━任务011: KKT Condition.vep [35.5M]
┃ ┣━━任务012: SVM 的直观理解.vep [25.7M]
┃ ┣━━任务013: SVM 的数学模型.vep [52.4M]
┃ ┣━━任务014: 带松弛变量的SVM.vep [50.5M]
┃ ┣━━任务015: 带Kernel的SVM.vep [69.5M]
┃ ┣━━任务016: SVM的SMO的解法.vep [56.2M]
┃ ┣━━任务017: 使用SVM支持多个类别.vep [14.8M]
┃ ┣━━任务018: Kernel Linear Regression.vep [23.7M]
┃ ┣━━任务019: Kernel PCA.vep [43.3M]
┃ ┣━━任务020: 交叉验证.vep [11.3M]
┃ ┣━━任务021: VC维.vep [9.8M]
┃ ┣━━任务022: 直播答疑01.vep [105.5M]
┃ ┣━━任务023: 直播答疑02.vep [142.8M]
┃ ┣━━任务024: LP实战01上.vep [69.8M]
┃ ┣━━任务024: LP实战01下.vep [17.4M]
┃ ┣━━任务025: LP实战02.vep [47.8M]
┃ ┣━━任务026: LP实战03.vep [67.9M]
┃ ┣━━任务027: Hard,NP Hard-01.vep [39.3M]
┃ ┣━━任务028: Hard,NP Hard-02.vep [46.3M]
┃ ┣━━任务029: Hard,NP Hard-03.vep [127.7M]
┃ ┣━━任务030: 引言.vep [8M]
┃ ┣━━任务031: 线性回归.vep [68M]
┃ ┣━━任务032: Basis Expansion.vep [22M]
┃ ┣━━任务033: Bias 与 Variance.vep [36.5M]
┃ ┣━━任务034: 正则化.vep [63.1M]
┃ ┣━━任务035: Ridge, Lasso, ElasticNet.vep [18.1M]
┃ ┣━━任务036: 逻辑回归.vep [99.6M]
┃ ┣━━任务037: Softmax 多元逻辑回归.vep [17.7M]
┃ ┣━━任务038: 梯度下降法.vep [33.5M]
┃ ┣━━任务039: SVM人脸识别结合Cross-validation交叉验证01.vep [63.8M]
┃ ┣━━任务040: SVM人脸识别结合Cross-validation交叉验证02.vep [59.3M]
┃ ┣━━任务041: SVM人脸识别结合Cross-validation交叉验证03.vep [108.9M]
┃ ┣━━任务042: SVM人脸识别结合Cross-validation交叉验证04.vep [133M]
┃ ┣━━任务043: 模型评估方法和SVM做人脸识别01.vep [71M]
┃ ┣━━任务044: 模型评估方法和SVM做人脸识别02.vep [51.7M]
┃ ┣━━任务045: 模型评估方法和SVM做人脸识别03.vep [117.6M]
┃ ┣━━任务046: PCA和LDA的原理和实战01.vep [52.7M]
┃ ┣━━任务047: PCA和LDA的原理和实战02.vep [72.7M]
┃ ┣━━任务048: PCA和LDA的原理和实战03.vep [124.1M]
┃ ┣━━任务049: Softmax with Cross Entropy01.vep [80.4M]
┃ ┣━━任务050: Softmax with Cross Entropy02.vep [90.7M]
┃ ┣━━任务051: Softmax with Cross Entropy03.vep [66.3M]
┃ ┣━━任务052: Kernel Logistic Regression and the Import Vec01.vep [74.7M]
┃ ┣━━任务053: Kernel Logistic Regression and the Import Vec02.vep [84.6M]
┃ ┣━━任务054: LDA 作为分类器.vep [101.6M]
┃ ┣━━任务055: LDA 作为分类器答疑.vep [128.7M]
┃ ┣━━任务056: LDA 作为降维工具.vep [38.1M]
┃ ┣━━任务057: Kernel LDA 5 Kernel LDA答疑.vep [10.1M]
┃ ┣━━任务058: Ensemble Majority Voting.vep [35.2M]
┃ ┣━━任务059: Ensemble Bagging.vep [22.1M]
┃ ┣━━任务060: Ensemble Boosting.vep [64.6M]
┃ ┣━━任务061: Ensemble Random Forests.vep [13.9M]
┃ ┣━━任务062: Ensemble Stacking.vep [25.1M]
┃ ┣━━任务063: 答疑.vep [226.6M]
┃ ┣━━任务064: 决策树的应用.vep [73.1M]
┃ ┣━━任务065: 集成模型.vep [58.4M]
┃ ┣━━任务066: 提升树.vep [53.3M]
┃ ┣━━任务067: 目标函数的构建.vep [42M]
┃ ┣━━任务068: Additive Training.vep [33.7M]
┃ ┣━━任务069: 使用泰勒级数近似目标函数.vep [41.9M]
┃ ┣━━任务070: 重新定义一棵树.vep [86.2M]
┃ ┣━━任务071: 如何寻找树的形状.vep [94.8M]
┃ ┣━━任务072: XGBoost-01.vep [87.6M]
┃ ┣━━任务073: XGBoost-02.vep [120M]
┃ ┣━━任务074: XGBoost-03.vep [128.6M]
┃ ┣━━任务075: XGBoost的代码解读 工程实战-01.vep [183.7M]
┃ ┣━━任务076: XGBoost的代码解读 工程实战-02.vep [148.6M]
┃ ┣━━任务077: XGBoost的代码解读 工程实战-03.vep [134.1M]
┃ ┣━━任务078: 理解和比较XGBoost GBDT LightGBM-01.vep [72.8M]
┃ ┣━━任务079: 理解和比较XGBoost GBDT LightGBM-02.vep [69M]
┃ ┣━━任务080: 理解和比较XGBoost GBDT LightGBM-03.vep [186M]
┃ ┣━━任务081: LightGBM-01.vep [80.2M]
┃ ┣━━任务082: LightGBM-02.vep [112.9M]
┃ ┣━━任务083: LightGBM-03.vep [90.1M]
┃ ┣━━任务084: 聚类算法介绍 K-Means 算法描述.vep [38.8M]
┃ ┣━━任务085: K-Means 的特性 K-Means++.vep [86.8M]
┃ ┣━━任务086: EM 算法思路.vep [45.4M]
┃ ┣━━任务087: EM 算法推演.vep [49.3M]
┃ ┣━━任务088: EM 算法的收敛性证明.vep [37.1M]
┃ ┣━━任务089: EM 与高斯混合模型.vep [113.6M]
┃ ┣━━任务090: EM 与 KMeans 的关系.vep [14.1M]
┃ ┣━━任务091: DBSCAN聚类算法.vep [66.9M]
┃ ┣━━任务092: 课后答疑.vep [64.6M]
┃ ┣━━任务093: kaggle广告点击欺诈识别实战-01.vep [78.9M]
┃ ┣━━任务094: kaggle广告点击欺诈识别实战-02.vep [113.2M]
┃ ┣━━任务095: kaggle广告点击欺诈识别实战-03.vep [219M]
┃ ┣━━任务096: kaggle广告点击欺诈识别实战-04.vep [234M]
┃ ┣━━任务097: KLDA实例+homework1讲评-01.vep [159.2M]
┃ ┣━━任务098: KLDA实例+homework1讲评-02.vep [81M]
┃ ┣━━任务099: KLDA实例+homework1讲评-03.vep [121M]
┃ ┣━━任务100: KLDA实例+homework1讲评-04.vep [114.8M]
┃ ┣━━任务101: Analysis and Applications-01.vep [81.4M]
┃ ┣━━任务102: Analysis and Applications-02.vep [93M]
┃ ┣━━任务103: Analysis and Applications-03.vep [59.4M]
┃ ┣━━任务104: Graphical Models.vep [124.3M]
┃ ┣━━任务105: Hidden Markov Model.vep [45.8M]
┃ ┣━━任务106: Finding Best Z.vep [91M]
┃ ┣━━任务107: Finding Best Z:Viterbi.vep [72.6M]
┃ ┣━━任务108: HMM 的参数估计.vep [125.7M]
┃ ┣━━任务109: 基于HMM的中文分词: jieba分词原理1.vep [116.3M]
┃ ┣━━任务110: 基于HMM的中文分词: jieba分词原理2.vep [174.8M]
┃ ┣━━任务111: 基于HMM的中文分词: jieba分词原理3.vep [130.1M]
┃ ┣━━任务112: 基于HMM的中文分词: jieba分词原理4.vep [141.2M]
┃ ┣━━任务113: Forward Algorithm.vep [66.1M]
┃ ┣━━任务114: Backward Algorithm.vep [26.1M]
┃ ┣━━任务115: Complete VS Incomplete Case.vep [50.9M]
┃ ┣━━任务116: Estimate A-Review of Language Model.vep [66.1M]
┃ ┣━━任务117: 回顾-生成模型与判别模型.vep [31M]
┃ ┣━━任务118: 回顾-有向图VS无向图.vep [38.8M]
┃ ┣━━任务119: Multinomial Logistic Regression.vep [58.7M]
┃ ┣━━任务120: 回顾-HMM.vep [51.4M]
┃ ┣━━任务121: Log-linear Model to linear-CRF.vep [72.2M]
┃ ┣━━任务122: Inference Problem.vep [48.5M]
┃ ┣━━任务123: XGBoost分类问题-01.vep [86M]
┃ ┣━━任务124: XGBoost分类问题-02.vep [193M]
┃ ┣━━任务125: XGBoost分类问题-03.vep [113.2M]
┃ ┣━━任务126: 基于STM-CRF命名实体识别-01.vep [96.4M]
┃ ┣━━任务127: 基于STM-CRF命名实体识别-02.vep [141M]
┃ ┣━━任务128: 基于STM-CRF命名实体识别-03.vep [237.1M]
┃ ┣━━任务129: Batch Normalization.vep [183.3M]
┃ ┣━━任务130: 深度学习与深度神经网络的历史背景.vep [59.5M]
┃ ┣━━任务131: 神经网络的前向算法.vep [44M]
┃ ┣━━任务132: 神经网络的误差向后传递算法.vep [48.5M]
┃ ┣━━任务133: 误差向后传递算法推导.vep [31.3M]
┃ ┣━━任务134: 课后答疑.vep [102.1M]
┃ ┣━━任务135: BP算法.vep [270.6M]
┃ ┣━━任务136: Pytorch基础.vep [285.4M]
┃ ┣━━任务137: Inception-ResNet卷积神经网络-01.vep [82.7M]
┃ ┣━━任务138: Inception-ResNet卷积神经网络-02.vep [133M]
┃ ┣━━任务139: 卷积的原理.vep [41.5M]
┃ ┣━━任务140: 多通道输入, 多通道输出的卷积操作, 典型的卷积网络结构.vep [24.9M]
┃ ┣━━任务141: 卷积层用于降低网络模型的复杂度.vep [36.2M]
┃ ┣━━任务142: 卷积层复杂度的推演 padding的种类.vep [35.1M]
┃ ┣━━任务143: 卷积层的误差向后传递算法(梯度推演).vep [71.4M]
┃ ┣━━任务144: 卷积层的各种变体.vep [32.5M]
┃ ┣━━任务145: 经典的卷积网络一览.vep [50.2M]
┃ ┣━━任务146: 课后答疑.vep [303.1M]
┃ ┣━━任务147: BP算法回顾-01.vep [128.9M]
┃ ┣━━任务148: BP算法回顾-02.vep [125.6M]
┃ ┣━━任务149: BP算法回顾-03.vep [121.8M]
┃ ┣━━任务150: 矩阵求导-01.vep [83.4M]
┃ ┣━━任务151: 矩阵求导-02.vep [100.2M]
┃ ┣━━任务152: 矩阵求导-03.vep [144.6M]
┃ ┣━━任务153: EffNet-01.vep [63M]
┃ ┣━━任务154: EffNet-02.vep [94.2M]
┃ ┣━━任务155: MobileNet-01.vep [146.6M]
┃ ┣━━任务156: MobileNet-02.vep [85.6M]
┃ ┣━━任务157: MobileNet-03.vep [266.3M]
┃ ┣━━任务158: ShuffleNet-01.vep [129.2M]
┃ ┣━━任务159: ShuffleNet-02.vep [118.4M]
┃ ┣━━任务160: ShuffleNet-03.vep [132.9M]
┃ ┣━━任务161: 神经网络的梯度消失及其对策.vep [63.5M]
┃ ┣━━任务162: 神经网络的过拟合及其对策1-Dropout.vep [14M]
┃ ┣━━任务163: 神经网络的过拟合及其对策2-L1 L2 Regularization.vep [9.4M]
┃ ┣━━任务164: 神经网络的过拟合及其对策3-Max Norm.vep [9.3M]
┃ ┣━━任务165: 神经网络的过拟合及其对策4-Batch Normalization.vep [47.3M]
┃ ┣━━任务166: 批处理梯度下降法, 随机梯度下降法, mini批处理梯度下降法.vep [54.5M]
┃ ┣━━任务167: 使用了Momentum的梯度下降法.vep [23.4M]
┃ ┣━━任务168: Nesterov梯度下降法.vep [27.5M]
┃ ┣━━任务169: Adagrad梯度下降法.vep [19.6M]
┃ ┣━━任务170: Adadelta, RMSprop梯度下降法.vep [11.4M]
┃ ┣━━任务171: Adam梯度下降法.vep [40.1M]
┃ ┣━━任务172: Hyperparameter Tuning.vep [20.2M]
┃ ┣━━任务173: 网络Optimizer learning rate, number of hidden layer.vep [21.3M]
┃ ┣━━任务174: 卷积神经网络的应用.vep [20.5M]
┃ ┣━━任务175: 课后答疑.vep [44M]
┃ ┣━━任务176: 语言模型的原理及其应用.vep [21.9M]
┃ ┣━━任务177: 基于n-gram的语言模型.vep [69.2M]
┃ ┣━━任务178: 基于固定窗口的神经语言模型.vep [27.8M]
┃ ┣━━任务179: RNN的原理, 基于RNN的语言模型及其应用.vep [94.2M]
┃ ┣━━任务180: RNN中的梯度消失与梯度爆炸.vep [57.4M]
┃ ┣━━任务181: LSTM的原理.vep [34M]
┃ ┣━━任务182: GRU的原理.vep [12.3M]
┃ ┣━━任务183: 梯度消失 爆炸的解决方案.vep [12.7M]
┃ ┣━━任务184: 双向Bidirectional RNN, 多层Multi-layer RNN.vep [25.5M]
┃ ┣━━任务185: 课后答疑.vep [68.1M]
┃ ┣━━任务186: 人脸关键点检测项目讲解-01.vep [182M]
┃ ┣━━任务187: 人脸关键点检测项目讲解-02.vep [165.9M]
┃ ┣━━任务188: 人脸关键点检测项目讲解-03.vep [167.7M]
┃ ┣━━任务189: LONG SHORT-TERM MEMORY-01.vep [72.7M]
┃ ┣━━任务190: LONG SHORT-TERM MEMORY-02.vep [81.7M]
┃ ┣━━任务191: 为什么需要Attention注意力机制.vep [40.8M]
┃ ┣━━任务192: Attention的原理.vep [55.3M]
┃ ┣━━任务193: Transformer入门.vep [15.9M]
┃ ┣━━任务194: Self-Attention注意力机制的原理.vep [63.9M]
┃ ┣━━任务195: Positional Encoding.vep [15M]
┃ ┣━━任务196: Layer Normalization.vep [14.4M]
┃ ┣━━任务197: Transformer Decoder解码器的原理, 损失函数, 训练小技巧.vep [96.3M]
┃ ┣━━任务198: Bert的原理.vep [31.7M]
┃ ┣━━任务199: 课后答疑.vep [90.1M]
┃ ┣━━任务200: 课中答疑.vep [52.3M]
┃ ┣━━任务201: Word2Vec论文解读-01.vep [97.2M]
┃ ┣━━任务202: Word2Vec论文解读-02.vep [71.6M]
┃ ┣━━任务203: Word2Vec论文解读-03.vep [124.1M]
┃ ┣━━任务204: 使用BiLSTM+CNN实现NER-01.vep [67.9M]
┃ ┣━━任务205: 使用BiLSTM+CNN实现NER-02.vep [116.1M]
┃ ┣━━任务206: 使用BiLSTM+CNN实现NER-03.vep [173.6M]
┃ ┣━━任务207: 机器翻译项目讲解-01.vep [92.2M]
┃ ┣━━任务208: 机器翻译项目讲解-02.vep [75.1M]
┃ ┣━━任务209: 机器翻译项目讲解-03.vep [110.9M]
┃ ┣━━任务210: 机器翻译项目讲解-04.vep [88.1M]
┃ ┣━━任务211: 机器翻译项目讲解-05.vep [100.2M]
┃ ┣━━任务212: Facebook 基于决策树和逻辑回归的广告推荐-01.vep [127.1M]
┃ ┣━━任务213: Facebook 基于决策树和逻辑回归的广告推荐-02.vep [138.9M]
┃ ┣━━任务214: 推荐系统是什么 以Amazon为案例.vep [30.9M]
┃ ┣━━任务215: 推荐系统的类别 数学模型 训练数据.vep [50.2M]
┃ ┣━━任务216: 基于内容的推荐算法.vep [22M]
┃ ┣━━任务217: 基于协同过滤的推荐算法.vep [11.2M]
┃ ┣━━任务218: 基于矩阵分解的推荐算法.vep [13.1M]
┃ ┣━━任务219: 基于因子分解机的推荐算法.vep [41.7M]
┃ ┣━━任务220: 基于深度神经网络的推荐算法.vep [15M]
┃ ┣━━任务221: 基于排序 强化学习 和集成学习的推荐算法.vep [14.8M]
┃ ┣━━任务222: 如何评估推荐系统.vep [26.1M]
┃ ┣━━任务223: 总结与系统架构.vep [29.6M]
┃ ┣━━任务224: 课后答疑.vep [140.2M]
┃ ┣━━任务225: Amazon Item-to-Item的协同过滤算法-01.vep [94.5M]
┃ ┣━━任务226: Amazon Item-to-Item的协同过滤算法-02.vep [155.9M]
┃ ┣━━任务227: Amazon Item-to-Item的协同过滤算法-03.vep [199.3M]
┃ ┣━━任务228: Google Yotube 基于深度学习的视频推荐-01.vep [150.8M]
┃ ┣━━任务229: Google Yotube 基于深度学习的视频推荐-02.vep [223.5M]
┃ ┣━━任务230: MAB 强化学习的简介, 与其他推荐算法的区别.vep [31.6M]
┃ ┣━━任务231: MAB 的模型定义.vep [15.6M]
┃ ┣━━任务232: epsilon-Greedy MAB.vep [35.2M]
┃ ┣━━任务233: Upper Confidence Bound MAB.vep [66.5M]
┃ ┣━━任务234: Thompson Sampling MAB.vep [26.4M]
┃ ┣━━任务235: Contextual MAB-LinUCB.vep [36.3M]
┃ ┣━━任务236: Nueral Collaborative Filtering 简介.vep [9M]
┃ ┣━━任务237: Neural Collaborative Filtering作为广义的矩阵分解.vep [31.2M]
┃ ┣━━任务238: Neural Collaborative Filtering使用多层神经网络实现.vep [3.9M]
┃ ┣━━任务239: Neural Collaborative Filtering结合广义的矩阵分解和多层神经网络.vep [9.7M]
┃ ┣━━任务240: 课后答疑.vep [356.9M]
┃ ┣━━任务241: 基于NMF非负矩阵分解学习非完整评价-01.vep [158.7M]
┃ ┣━━任务242: 基于NMF非负矩阵分解学习非完整评价-02.vep [174.8M]
┃ ┣━━任务243: 基于FFM分解机的点击率预测-01.vep [121.5M]
┃ ┣━━任务244: 基于FFM分解机的点击率预测-02.vep [85.4M]
┃ ┣━━任务245: 基于FFM分解机的点击率预测-03.vep [115.9M]
┃ ┣━━任务246: Neural Collaborative Filtering-01.vep [94.3M]
┃ ┣━━任务247: Neural Collaborative Filtering-02.vep [74.6M]
┃ ┣━━任务248: Neural Collaborative Filtering-03.vep [147.8M]
┃ ┣━━任务249: Neural Collaborative Filtering-04.vep [150.4M]
┃ ┣━━任务250: Supervised Learning Unsupervised Learning Gen联系.vep [38.1M]
┃ ┣━━任务251: 从 AutoEncoder 到 GAN 的演化.vep [40.2M]
┃ ┣━━任务252: 训练 GAN 需要注意的问题.vep [16M]
┃ ┣━━任务253: ConditionalGAN 的原理和应用.vep [48.1M]
┃ ┣━━任务254: 关于 ConditionalGAN 的答疑.vep [50.1M]
┃ ┣━━任务255: CycleGAN 的原理.vep [65M]
┃ ┣━━任务256: CycleGAN 的应用.vep [51.1M]
┃ ┣━━任务257: 课后答疑.vep [176.4M]
┃ ┣━━任务258: Multi-Armed Bandit Epsilon Greedy 代码实现-01.vep [99.9M]
┃ ┣━━任务259: Multi-Armed Bandit Epsilon Greedy 代码实现-02.vep [142.5M]
┃ ┣━━任务260: Multi-Armed Bandit Thompson Sampling 代码实现-01.vep [65.2M]
┃ ┣━━任务261: Multi-Armed Bandit Thompson Sampling 代码实现-02.vep [74.9M]
┃ ┣━━任务262: Multi-Armed Bandit Thompson Sampling 代码实现-03.vep [175.4M]
┃ ┣━━任务263: A Contextual-Bandit Approach to Personalized N-01.vep [110M]
┃ ┣━━任务264: A Contextual-Bandit Approach to Personalized N-02.vep [123.4M]
┃ ┣━━任务265: Unsupervised Representation Learning with Deep Con.vep [148.9M]
┃ ┣━━任务266: CycleGan的实现-01.vep [197.7M]
┃ ┣━━任务267: CycleGan的实现-02.vep [289.7M]
┃ ┣━━任务268: CycleGan的实现-03.vep [265.9M]
┃ ┣━━任务269: 条件GAN网络Pix2Pix代码解读-01.vep [226.8M]
┃ ┣━━任务270: 条件GAN网络Pix2Pix代码解读-02.vep [236.5M]
┃ ┣━━任务271: 条件GAN网络Pix2Pix代码解读-03.vep [206.1M]
┃ ┣━━任务272: 条件GAN网络Pix2Pix代码解读-04.vep [128.1M]
┃ ┣━━任务273: 强化学习的背景知识.vep [22.1M]
┃ ┣━━任务274: 强化学习的数学定义.vep [37.3M]
┃ ┣━━任务275: 通过价值函数进行强化学习.vep [58.8M]
┃ ┣━━任务276: Q-Learning.vep [58.7M]
┃ ┣━━任务277: Deep Q-Learning Neural Network.vep [59.9M]
┃ ┣━━任务278: Policy Gradient Neural Network.vep [70.4M]
┃ ┣━━任务279: Policy Gradient Neural Network 代码演示.vep [40M]
┃ ┣━━任务280: 课后答疑.vep [119.9M]
┃ ┣━━任务281: 项目-强化学习玩乒乓游戏(作业布置)-01.vep [171.6M]
┃ ┣━━任务282: 项目-强化学习玩乒乓游戏(作业布置)-02.vep [285.7M]
┃ ┣━━任务283: 项目-强化学习玩乒乓游戏(作业布置)-03.vep [287.8M]
┃ ┣━━任务284: Asynchronous Methods for Deep Reinforcement Le-01.vep [120.7M]
┃ ┣━━任务285: Asynchronous Methods for Deep Reinforcement Le-02.vep [155.4M]
┃ ┣━━任务286: 项目-强化学习玩乒乓游戏-代码讲解1-01.vep [161.9M]
┃ ┣━━任务287: 项目-强化学习玩乒乓游戏-代码讲解1-02.vep [204.4M]
┃ ┣━━任务288: 项目-强化学习玩乒乓游戏-代码讲解1-03.vep [247.2M]
┃ ┣━━任务289: 项目-强化学习玩乒乓游戏-代码讲解1-04.vep [227.7M]
┃ ┣━━任务290: 项目-强化学习玩乒乓游戏-代码讲解2(策略梯度法).vep [477.6M]
┃ ┣━━任务291: Representing Model Uncertainty in Deep Learning.vep [124.9M]
┃ ┣━━任务292: 贝叶斯思想与主题模型-01.vep [63.4M]
┃ ┣━━任务293: 贝叶斯思想与主题模型-02.vep [94.1M]
┃ ┣━━任务294: 贝叶斯思想与主题模型-03.vep [133.7M]
┃ ┣━━任务295: 贝叶斯思想与主题模型-04.vep [199M]
┃ ┣━━任务296: 贝叶斯思想与主题模型-05.vep [130M]
┃ ┣━━任务297: LDA代码实战-01.vep [97.5M]
┃ ┣━━任务298: LDA代码实战-02.vep [162.4M]
┃ ┣━━任务299: LDA代码实战-03.vep [256.4M]
┃ ┣━━任务300: Bayesian Neural Network实战-01.vep [186.3M]
┃ ┣━━任务301: Bayesian Neural Network实战-02.vep [32.8M]
┃ ┣━━任务302: Rethinking LDA-Why Priors Matter-01.vep [63.8M]
┃ ┣━━任务303: Rethinking LDA-Why Priors Matter-02.vep [83.2M]
┃ ┣━━任务304: Collapsed Gibbs Sampler 变分法 SGLD SVI-01.vep [63.2M]
┃ ┣━━任务305: Collapsed Gibbs Sampler 变分法 SGLD SVI-02.vep [70.9M]
┃ ┣━━任务306: Collapsed Gibbs Sampler 变分法 SGLD SVI-03.vep [89M]
┃ ┣━━任务307: Collapsed Gibbs Sampler 变分法 SGLD SVI-04.vep [84.7M]
┃ ┣━━任务308: Collapsed Gibbs Sampler 变分法 SGLD SVI-05.vep [179.7M]
┃ ┣━━任务309: Introduction to Bayesian Deep Learning-01.vep [68.2M]
┃ ┣━━任务310: Introduction to Bayesian Deep Learning-02.vep [256.4M]
┃ ┣━━任务311: 大规模贝叶斯学习 图像和文本的Disentangling-01.vep [101.8M]
┃ ┣━━任务312: 大规模贝叶斯学习 图像和文本的Disentangling-02.vep [106.2M]
┃ ┣━━任务313: 大规模贝叶斯学习 图像和文本的Disentangling-03.vep [148.9M]
┃ ┣━━任务314: 大规模贝叶斯学习 图像和文本的Disentangling-04.vep [278.1M]
┃ ┣━━任务315: 大规模贝叶斯学习 图像和文本的Disentangling-05.vep [145.9M]
┃ ┣━━任务316: Gaussian Process And Bayesian Optimization-01.vep [79.1M]
┃ ┣━━任务317: Gaussian Process And Bayesian Optimization-02.vep [91M]
┃ ┣━━任务318: Gaussian Process And Bayesian Optimization-03.vep [152.1M]
┃ ┣━━任务319: HDP层次狄利克雷过程-01.vep [58.1M]
┃ ┣━━任务320: HDP层次狄利克雷过程-02.vep [52.6M]
┃ ┣━━任务321: HDP层次狄利克雷过程-03.vep [92.3M]
┃ ┣━━任务322: HDP层次狄利克雷过程-04.vep [95.3M]
┃ ┣━━任务323: Auto-Sklearn论文解读和代码实战-01.vep [51.3M]
┃ ┣━━任务324: Auto-Sklearn论文解读和代码实战-02.vep [69.6M]
┃ ┣━━任务325: Auto-Sklearn论文解读和代码实战-03.vep [74.8M]
┃ ┣━━任务326: Auto-Sklearn论文解读和代码实战-04.vep [108.9M]
┃ ┣━━任务327: A Survey on Automated Machine Learning-01.vep [85.6M]
┃ ┣━━任务328: A Survey on Automated Machine Learning-02.vep [93.6M]
┃ ┣━━任务329: Lecture-Graph Convolutional Network-01.vep [90.7M]
┃ ┣━━任务330: Lecture-Graph Convolutional Network-02.vep [253.1M]
┃ ┣━━任务331: Lecture-Graph Convolutional Network-03.vep [207.1M]
┃ ┣━━任务332: Lecture-Graph Convolutional Network-03.vep [247.3M]
┃ ┣━━任务333: Review-Introduction to Variational Autoencoder-1.vep [209.5M]
┃ ┣━━任务334: Review-Introduction to Variational Autoencoder-2.vep [60.3M]
┃ ┣━━任务335: Review-Adversial Machine Learning-1.vep [167.1M]
┃ ┣━━任务336: Review-Adversial Machine Learning-2.vep [132.8M]
┃ ┣━━任务337: Review-Adversial Machine Learning-3.vep [149.7M]
┃ ┣━━任务338: Review-Intro to Privacy-preserving machine-1.vep [98.4M]
┃ ┣━━任务339: Review-Intro to Privacy-preserving machine-2.vep [65M]
┃ ┣━━任务340: Review-graph CNN的代码实战-1.vep [174.1M]
┃ ┣━━任务341: Review-graph CNN的代码实战-2.vep [105.3M]
┃ ┣━━任务342: Review-graph CNN的代码实战-3.vep [145.4M]
┃ ┗━━任务343: Review-graph CNN的代码实战-4.vep [126.9M]
┗━━00.资料.zip [269.4M]
声明:由于本网站资源是搜集整理而成,版权均归原作者所有。本站仅提供一个观摩学习的环境,将不对任何资源负法律责任。若无意中侵犯到您的版权利益,请来信联系我们,我们会在收到信息后会尽快给予处理!
评论(6)
课程是什么时候的呀
贪心高阶一期 19年末官网开班 2020年官网完结的课
新版20年高阶机器学习准备上线不
官网完结可能会上线哈 具体看资源热度
这个不是加密的吗?
加密的哈,播放器除了linux都能放,一个账号可以授权3台设备