【尊享】ZX002 – NLP7期[29.3G]
┣━━00.试看 [445.5M]
┃ ┣━━1.任务1: Lecture-概论,算法复杂度,动态规划,DTW,逻辑回归与正则-1.mp4 [105.7M]
┃ ┣━━2.任务2: Lecture-概论,算法复杂度,动态规划,DTW,逻辑回归与正则-2.mp4 [121.1M]
┃ ┣━━35.任务35: 凸优化 (2) Lecture Dualtiy, KKT条件,SVM的primal-Dual-4.mp4 [114.4M]
┃ ┗━━64.任务64: Review Answer extraction-3.mp4 [104.2M]
┣━━01.视频 [28.5G]
┃ ┣━━1.任务1: Lecture-概论,算法复杂度,动态规划,DTW,逻辑回归与正则-1.vep [105.7M]
┃ ┣━━2.任务2: Lecture-概论,算法复杂度,动态规划,DTW,逻辑回归与正则-2.vep [121.1M]
┃ ┣━━3.任务3: Lecture-概论,算法复杂度,动态规划,DTW,逻辑回归与正则-3.vep [79.5M]
┃ ┣━━4.任务4: Lecture-概论,算法复杂度,动态规划,DTW,逻辑回归与正则-4.vep [160M]
┃ ┣━━5.任务5: Lecture-概论,算法复杂度,动态规划,DTW,逻辑回归与正则-5.vep [209.8M]
┃ ┣━━6.任务6: Paper-第一篇论文-1.vep [160.3M]
┃ ┣━━7.任务7: Paper-第一篇论文-2.vep [250.1M]
┃ ┣━━8.任务8: 树模型以及XGBoost核心算法讲解-1.vep [171.2M]
┃ ┣━━9.任务9: 树模型以及XGBoost核心算法讲解-2.vep [86M]
┃ ┣━━10.任务10: 树模型以及XGBoost核心算法讲解-3.vep [107.6M]
┃ ┣━━11.任务11: 树模型以及XGBoost核心算法讲解-4.vep [86.3M]
┃ ┣━━12.任务12: 树模型以及XGBoost核心算法讲解-5.vep [97.3M]
┃ ┣━━13.任务13: Review-经典数据结构与算法-哈希表,搜索树,堆(优先堆)-1.vep [93.9M]
┃ ┣━━14.任务14: Review-经典数据结构与算法-哈希表,搜索树,堆(优先堆)-2.vep [101.4M]
┃ ┣━━15.任务15: Review Ensemble模型实战-1.vep [173.9M]
┃ ┣━━16.任务16: Review Ensemble模型实战-2.vep [227.7M]
┃ ┣━━17.任务17: Paper 第二篇论文讲解-1.vep [176.8M]
┃ ┣━━18.任务18: Paper 第二篇论文讲解-2.vep [357.8M]
┃ ┣━━19.任务19: Lecture-凸优化(1)-1.vep [77.7M]
┃ ┣━━20.任务20: Lecture-凸优化(1)-2.vep [118.1M]
┃ ┣━━21.任务21: Lecture-凸优化(1)-3.vep [308.5M]
┃ ┣━━22.任务22: Lecture-凸优化(1)-4.vep [322.9M]
┃ ┣━━23.任务23: Lecture-凸优化(1)-5.vep [338.4M]
┃ ┣━━24.任务24: Review-生活中的优化问题-1.vep [330.6M]
┃ ┣━━25.任务25: Review-生活中的优化问题-2.vep [136.3M]
┃ ┣━━26.任务26: LP QP以及它们的Dual-1.vep [122.2M]
┃ ┣━━27.任务27: LP QP以及它们的Dual-2.vep [121.1M]
┃ ┣━━28.任务28: LP QP以及它们的Dual-3.vep [68.1M]
┃ ┣━━29.任务29: Review Simplex Method与LP实战-1.vep [122.1M]
┃ ┣━━30.任务30: Review Simplex Method与LP实战-2.vep [98.9M]
┃ ┣━━31.任务31: Review Simplex Method与LP实战-3.vep [216.6M]
┃ ┣━━32.任务32: 凸优化 (2) Lecture Dualtiy, KKT条件,SVM的primal-Dual-1.vep [71.4M]
┃ ┣━━33.任务33: 凸优化 (2) Lecture Dualtiy, KKT条件,SVM的primal-Dual-2.vep [92.8M]
┃ ┣━━34.任务34: 凸优化 (2) Lecture Dualtiy, KKT条件,SVM的primal-Dual-3.vep [93.5M]
┃ ┣━━35.任务35: 凸优化 (2) Lecture Dualtiy, KKT条件,SVM的primal-Dual-4.vep [114.4M]
┃ ┣━━36.任务36: Review Inventory Optimization with Stochastic -1.vep [137.8M]
┃ ┣━━37.任务37: Review Inventory Optimization with Stochastic-2.vep [194.6M]
┃ ┣━━38.任务38: Review 搜索引擎技术介绍-1..vep [39.9M]
┃ ┣━━39.任务39: Review 搜索引擎技术介绍-2.vep [55.4M]
┃ ┣━━40.任务40: Review 搜索引擎技术介绍-3.vep [86.9M]
┃ ┣━━41.任务41: Review 各类文本相似度计算技术的Survey-1.vep [66.4M]
┃ ┣━━42.任务42: Review 各类文本相似度计算技术的Survey-2.vep [95M]
┃ ┣━━43.任务43: Review 各类文本相似度计算技术的Survey-3.vep [151.7M]
┃ ┣━━44.任务44: Lectur文本表示-1..vep [147.8M]
┃ ┣━━45.任务45: Lectur文本表示-2.vep [85.9M]
┃ ┣━━46.任务46: Lectur文本表示-3.vep [79.1M]
┃ ┣━━47.任务47: Lectur文本表示-4.vep [32.8M]
┃ ┣━━48.任务48: Lectur文本表示-5.vep [93.5M]
┃ ┣━━49.任务49: Review homework 1讲解.vep [193M]
┃ ┣━━50.任务50: 动态规划问题讲解-1.vep [118M]
┃ ┣━━51.任务51: 贪心算法问题讲解-2.vep [137.9M]
┃ ┣━━52.任务52: Review Evaluation methods for unsupervised word-1.vep [252.4M]
┃ ┣━━53.任务53: Lecture SkipGram(重点讲解)-1.vep [57.5M]
┃ ┣━━54.任务54: Lecture SkipGram(重点讲解)-2.vep [91.1M]
┃ ┣━━55.任务55: Lecture SkipGram(重点讲解)-3.vep [94.4M]
┃ ┣━━56.任务56: Lecture SkipGram(重点讲解)-4.vep [273.2M]
┃ ┣━━57.任务57: Lecture SkipGram(重点讲解)-5.vep [83.9M]
┃ ┣━━58.任务58: Lecture SkipGram(重点讲解)-6.vep [76.8M]
┃ ┣━━59.任务59: Review SkipGram源代码解读-1.vep [329.1M]
┃ ┣━━60.任务60: Review SkipGram源代码解读-2.vep [246.9M]
┃ ┣━━61.任务61: Review SkipGram源代码解读-3.vep [290M]
┃ ┣━━62.任务62: Review 问题处理-1.vep [66.1M]
┃ ┣━━63.任务63: Review 文档段落检索和排序-2.vep [56M]
┃ ┣━━64.任务64: Review Answer extraction-3.vep [104.2M]
┃ ┣━━65.任务65: Lecture EM算法和HMM-1.vep [57.7M]
┃ ┣━━66.任务66: Lecture EM算法和HMM-2.vep [79.9M]
┃ ┣━━67.任务67: Lecture EM算法和HMM-3.vep [87.6M]
┃ ┣━━68.任务68: Lecture EM算法和HMM-4.vep [112.9M]
┃ ┣━━69.任务69: Lecture EM算法和HMM-5.vep [97.5M]
┃ ┣━━70.任务70: Review 代码实战:如何基于HMM实现词性分析器?(POS tagger)-1.vep [114.2M]
┃ ┣━━71.任务71: Review 代码实战:如何基于HMM实现词性分析器?(POS tagger)-2.vep [119.6M]
┃ ┣━━72.任务72: Review 结巴分词的应用以及底层原理剖析-1.vep [101.9M]
┃ ┣━━73.任务73: Review 结巴分词的应用以及底层原理剖析-2.vep [253.4M]
┃ ┣━━74.任务74: Review 结巴分词的应用以及底层原理剖析-3.vep [121.7M]
┃ ┣━━75.任务75: Review Bidirectional LSTM-CRF.vep [214.5M]
┃ ┣━━76.任务76: 课外论文分享-Don’t stop pre-training.vep [257.4M]
┃ ┣━━77.任务77: Review project1讲解(项目一)-1.vep [435.8M]
┃ ┣━━78.任务78: Review project1讲解(项目一)-2.vep [371.5M]
┃ ┣━━79.任务79: Review project1讲解(项目一)-3.vep [489.9M]
┃ ┣━━80.任务80: Review 代码实战:基于LSTM-CRF的命名实体识别-1.vep [112.5M]
┃ ┣━━81.任务81: Review 代码实战:基于LSTM-CRF的命名实体识别-2.vep [318.8M]
┃ ┣━━82.任务82: Lecture CRF模型-1.vep [103.2M]
┃ ┣━━83.任务83: Lecture CRF模型-2.vep [79.9M]
┃ ┣━━84.任务84: Lecture CRF模型-3.vep [89.9M]
┃ ┣━━85.任务85: Lecture CRF模型-4.vep [96.3M]
┃ ┣━━86.任务86: Lecture CRF模型-5.vep [43.1M]
┃ ┣━━87.任务87: Lecture CRF模型-6.vep [154.4M]
┃ ┣━━88.任务88: Lecture CRF模型(2)-1.vep [97.7M]
┃ ┣━━89.任务89: Lecture CRF模型(2)-2.vep [99M]
┃ ┣━━90.任务90: Lecture RNN, LSTM,梯度问题-1.vep [95.7M]
┃ ┣━━91.任务91: Lecture RNN, LSTM,梯度问题-2.vep [113.1M]
┃ ┣━━92.任务92: Lecture RNN, LSTM,梯度问题-3.vep [86M]
┃ ┣━━93.任务93: Lecture RNN, LSTM,梯度问题-4.vep [84.6M]
┃ ┣━━94.任务94: Review GPU的使用与环境搭建+基于pytorch的简单的神经网络搭建-1.vep [103.8M]
┃ ┣━━95.任务95: Review GPU的使用与环境搭建+基于pytorch的简单的神经网络搭建-2.vep [183.2M]
┃ ┣━━96.任务96: Review Pytorch讲解-1.vep [97.5M]
┃ ┣━━97.任务97: Review Pytorch讲解-2.vep [137.3M]
┃ ┣━━98.任务98: Review Sequence to Sequence Learning.vep [546.4M]
┃ ┣━━99.任务99: Lecture Seq2Seq, Attention, Pointer Network-1.vep [114.1M]
┃ ┣━━100.任务100: Lecture Seq2Seq, Attention, Pointer Network-2.vep [115.1M]
┃ ┣━━101.任务101: Lecture Seq2Seq, Attention, Pointer Network-3.vep [92.9M]
┃ ┣━━102.任务102: Lecture Seq2Seq, Attention, Pointer Network-4.vep [168.9M]
┃ ┣━━103.任务103: Review Introduction to Transfer Learing-1.vep [126.9M]
┃ ┣━━104.任务104: Review Introduction to Transfer Learing-2.vep [153.3M]
┃ ┣━━105.任务105: Review LSTM的实现(源码讲解)-1.vep [103.3M]
┃ ┣━━106.任务106: Review LSTM的实现(源码讲解)-2.vep [163.7M]
┃ ┣━━107.任务107: Lecture Transformer, BERT-1.vep [76.5M]
┃ ┣━━108.任务108: Lecture Transformer, BERT-2.vep [97.3M]
┃ ┣━━109.任务109: Lecture Transformer, BERT-3.vep [120.9M]
┃ ┣━━110.任务110: Lecture Transformer, BERT-4.vep [23.7M]
┃ ┣━━111.任务111: Lecture Transformer, BERT-5.vep [106.2M]
┃ ┣━━112.任务112: Lecture Transformer, BERT-6.vep [57.1M]
┃ ┣━━113.任务113: Review BERT Pre-training of Deep Bidirectional.vep [233.7M]
┃ ┣━━114.任务114: Review 基于Transformer的机器翻译-1.vep [135M]
┃ ┣━━115.任务115: Review 基于Transformer的机器翻译-2.vep [249.7M]
┃ ┣━━116.任务116: Review BERT的训练与实战-1.vep [64.5M]
┃ ┣━━117.任务117: Review BERT的训练与实战-2.vep [114.1M]
┃ ┣━━118.任务118: Review BERT的训练与实战-3.vep [122.2M]
┃ ┣━━119.任务119: Review BERT的训练与实战-4.vep [454.1M]
┃ ┣━━120.任务120: Paper Graph_Tranfromer_Networks-1.vep [91.2M]
┃ ┣━━121.任务121: Paper Graph_Tranfromer_Networks-2.vep [163.7M]
┃ ┣━━122.任务122: Lecture GPT, XLNet-1.vep [125M]
┃ ┣━━123.任务123: Lecture GPT, XLNet-2.vep [98.2M]
┃ ┣━━124.任务124: Lecture GPT, XLNet-3.vep [145.1M]
┃ ┣━━125.任务125: Lecture GPT, XLNet-4.vep [119M]
┃ ┣━━126.任务126: Lecture GPT, XLNet-5.vep [92.3M]
┃ ┣━━127.任务127: Lecture GPT, XLNet-6.vep [97.3M]
┃ ┣━━128.任务128: Review XLNET应用在文本分类和QA系统-1.vep [188.9M]
┃ ┣━━129.任务129: Review XLNET应用在文本分类和QA系统-2.vep [281.4M]
┃ ┣━━130.任务130: Paper End-to-end Sequence.vep [276M]
┃ ┣━━131.任务131: Lecture 信息抽取(1)-1.vep [101.6M]
┃ ┣━━132.任务132: Lecture 信息抽取(1)-2.vep [99.4M]
┃ ┣━━133.任务133: Lecture 信息抽取(1)-3.vep [81.7M]
┃ ┣━━134.任务134: Lecture 信息抽取(1)-4.vep [133.9M]
┃ ┣━━135.任务135: Review 命名实体识别代码实战:BERT-BILSTM-CRF-1.vep [124.1M]
┃ ┣━━136.任务136: Review 命名实体识别代码实战:BERT-BILSTM-CRF-2.vep [252M]
┃ ┣━━137.任务137: Review 项目二讲解-1.vep [218.6M]
┃ ┣━━138.任务138: Review 项目二讲解-2.vep [246.2M]
┃ ┣━━139.任务139: Review ALBERT-1.vep [64.3M]
┃ ┣━━140.任务140: Review ALBERT-2.vep [107.6M]
┃ ┣━━141.任务141: Review ALBERT-3.vep [289.8M]
┃ ┣━━142.任务142: Review XLNET源码讲解-1.vep [223.5M]
┃ ┣━━143.任务143: Review XLNET源码讲解-2.vep [247.7M]
┃ ┣━━144.任务144: Review XLNET源码讲解-3.vep [222.6M]
┃ ┣━━145.任务145: Lecture 信息抽取(2)-1.vep [123.7M]
┃ ┣━━146.任务146: Lecture 信息抽取(2)-2.vep [228.5M]
┃ ┣━━147.任务147: Lecture 信息抽取(2)-3.vep [111.9M]
┃ ┣━━148.任务148: Lecture 信息抽取(2)-4.vep [167.2M]
┃ ┣━━149.任务149: Review 依存文法分析(Dependency Parsing)+ homework讲解-1.vep [119.9M]
┃ ┣━━150.任务150: Review 依存文法分析(Dependency Parsing)+ homework讲解-2.vep [186.3M]
┃ ┣━━151.任务151: Review 依存文法分析(Dependency Parsing)+ homework讲解-3.vep [334.3M]
┃ ┣━━152.任务152: Paper K-BERT Enabling Language Representation.vep [440.3M]
┃ ┣━━153.任务153: Review 项目三讲解-1.vep [272.6M]
┃ ┣━━154.任务154: Review 项目三讲解-2.vep [304.9M]
┃ ┣━━155.任务155: Review 句法分析(Parsing)和CKY算法-1.vep [156.8M]
┃ ┣━━156.任务156: Review 句法分析(Parsing)和CKY算法-2.vep [244.9M]
┃ ┣━━157.任务157: Review 知识图谱在推荐系统中的应用-1.vep [119.4M]
┃ ┣━━158.任务158: Review 知识图谱在推荐系统中的应用-2.vep [164.6M]
┃ ┣━━159.任务159: Lecture 知识图的概念,搭建,应用场景-1.vep [202M]
┃ ┣━━160.任务160: Lecture 知识图的概念,搭建,应用场景-2.vep [264.7M]
┃ ┣━━161.任务161: Lecture 知识图的概念,搭建,应用场景-3.vep [218.2M]
┃ ┣━━162.任务162: Lecture 知识图的概念,搭建,应用场景-4.vep [220.8M]
┃ ┣━━163.任务163: Lecture 图神经网络-1.vep [133.8M]
┃ ┣━━164.任务164: Lecture 图神经网络-2.vep [83.4M]
┃ ┣━━165.任务165: Lecture 图神经网络-3.vep [128.7M]
┃ ┣━━166.任务166: Lecture 图神经网络-4.vep [47.4M]
┃ ┣━━167.任务167: Lecture 图神经网络-5.vep [84.1M]
┃ ┣━━168.任务168: Review 聊天机器人项目讲解.vep [286.7M]
┃ ┣━━169.任务169: Review 知识图谱项目-1.vep [310.5M]
┃ ┣━━170.任务170: Review 知识图谱项目-2.vep [410.9M]
┃ ┣━━171.任务171: Lecture 概率图模型-1-1.vep [46.4M]
┃ ┣━━172.任务172: Lecture 概率图模型-1-2.vep [91.1M]
┃ ┣━━173.任务173: Lecture 概率图模型-1-3.vep [87.8M]
┃ ┣━━174.任务174: Lecture 概率图模型-2-1.vep [56.3M]
┃ ┣━━175.任务175: Lecture 概率图模型-2-2.vep [87M]
┃ ┣━━176.任务176: Lecture 概率图模型-2-3.vep [105.2M]
┃ ┣━━177.任务177: Lecture 概率图模型-2-4.vep [75.2M]
┃ ┣━━178.任务178: Lecture 概率图模型-3-1.vep [46.4M]
┃ ┣━━179.任务179: Lecture 概率图模型-3-2.vep [135.5M]
┃ ┣━━180.任务180: Lecture 概率图模型-3-3.vep [165.1M]
┃ ┣━━181.任务181: Review Bayesian Neural Network-1.vep [69.9M]
┃ ┣━━182.任务182: Review Bayesian Neural Network-2.vep [170.6M]
┃ ┣━━183.任务183: Review MCMC之Metroplis Hasting算法-1.vep [193.3M]
┃ ┣━━184.任务184: Review MCMC之Metroplis Hasting算法-2.vep [177M]
┃ ┣━━185.任务185: Paper Dropout as a Bayesian Approximation.vep [229.9M]
┃ ┣━━186.任务186: review 面试就业指导-1.vep [189.8M]
┃ ┗━━187.任务187: review 面试就业指导-2.vep [124.5M]
┣━━vep加密播放说明.txt [206B]
┗━━00.资料.zip [385.2M]

发表评论

后才能评论

购买后资源页面显示下载按钮和分享密码,点击后自动跳转百度云链接,输入密码后自行提取资源。

本章所有带有【尊享】和【加密】的课程均为加密课程,加密课程需要使用专门的播放器播放。

联系微信客服获取,一个授权账号可以激活三台设备,请在常用设备上登录账号。

可能资源被百度网盘黑掉,联系微信客服添加客服百度网盘好友后分享。

教程属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源